Halving Global CO2 Emissions by 2050: Technologies and Costs
Abstract
Keywords
Full Text:
PDFReferences
IPCC – Intergovernmental Panel on Climate Change, 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, and A. Adler], Cambridge University Press.
Van Vuuren D.P., Stehfest E., den Elzen M.G.J., et al., 2011. RCP2.6: Exploring the possibility to keep global mean temperature increase below 2°C. Climate Change 109: 95–116. DOI: 10.1007/s10584-011-0152-3
Pindyck R.S., 2015. The Use and Misuse of Models for Climate Policy. National Bureau of Economic Research’s (NBER) Working Paper no. 21097. Cambridge, MA, USA.
Rosen R.A., 2015. Critical review of: ‘Making or breaking climate targets — The AMPERE study on staged accession scenarios for climate policy’. Technol. Forecast. Soc. Change 96: 322–326. DOI: 10.1016/j.techfore.2015.01.019
Riahi K., Kriegler E., Johnson N., Bertram C., den Elzen M., Schaeffer M., Krey V., Luderer G., et al., 2015. Locked into Copenhagen pledges - Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change 90 (Part A): 8-23. DOI: 10.1016/j.techfore.2013.09.016.
Kriegler E., Petermann N., Krey V., Schwanitz V.J., Luderer G., Ashina S., Bosetti V., Eom J., Kitous A., et al., 2015. Diagnostic indicators for integrated assessment models of climate policy. Technological Forecasting and Social Change 90(Part A): 45-61. DOI: 10.1016/j.techfore.2013.09.020.
IIASA - International Institute for Applied Systems Analysis, 2012. Global Energy Assessment: Toward a Sustainable Future. Cambridge University Press, Cambridge, UK and New York, NY, USA, and IIASA, Laxenburg, Austria.
McCollum D., Nagay Y., Riahi K., Marangoni G., Calvin K., Pietzcker R., van Vliet J., and van der Zwaan B., 2013. Energy investments under climate policy: a comparison of global models. Clim. Change Econ. 4(4): 1340010. DOI: 10.1142/S2010007813400101.
Shah N., Vallejo L., Cockerill T., Gambhir A., Hills T., Jennings M., Jones O., Kalas N., Keirstead J., Khor C., Mazur C., Napp T., Strapasson A., Tong D., and Woods J., 2013. Halving Global CO2 by 2050: Technologies and Costs. Imperial College London, Executive Report. 28p. Retrieved from the World Wide Web: https://bit.ly/2W8cmsX.
Vallejo L., Cockerill T., Gambhir A., Hills T., Jennings M., Jones O., Kalas N., Keirstead J., Khor C., Mazur C., Napp T., Shah N., Strapasson A., Tong D., and Woods J., 2013. Halving Global CO2 by 2050: Technologies and Costs. Imperial College London, Full Report (Executive Report’s Annex). 80p. Retrieved from the World Wide Web: https://bit.ly/2VLOHzC.
Critchley E., 2013. Halving CO2 emissions by 2050: New report says it will cost $2 trillion a year. Imperial College News, 19 September 2013. Retrieved from the World Wide Web: https://www.imperial.ac.uk/news/129889/halving-co2-emissions-2050-new-report/.
Grantham Institute for Climate Change and Energy Futures Lab, 2013a. Launching event “In the balance: Can we halve global CO2 by 2050?” held at Imperial College London, UK, 17th Sep 2013. Retrieved from the World Wide Web: https://www.youtube.com/watch?v=kE_NxnD-3d4.
Grantham Institute for Climate Change and Energy Futures Lab, 2013b. Halving Global CO2 by 2050: Technologies and Costs. Reports, summary and introductory video. Imperial College London. Retrieved from the World Wide Web: https://www.imperial.ac.uk/grantham/publications/mitigation/halving-global-co2-by-2050-technologies-and-costs.php.
Tavoni M., Kriegler E., Riahi K., et al., 2014. Post-2020 climate agreements in the major economies assessed in the light of global models. Nat. Clim. Chang 5: 119–126. DOI: 10.1038/nclimate2475
Akimoto K., Sano F., Homma T., Oda J., Nagashima M., and Kii M., 2010. Estimates of GHG emission reduction potential by country, sector, and cost. Energy Policy 38: 3384–3393. DOI: 10.1016/j.enpol.2010.02.012
Hoogwijk M., Can S.R., Novikova A., Urge-Vorsatz D., Blomen E., and Blok K., 2010. Assessment of bottom-up sectoral and regional mitigation potentials. Energy Policy 38(6): 3044–3057. DOI: 10.1016/j.enpol.2010.01.045
IEA, 2010. Energy Technology Perspectives 2010: Scenarios & Strategies to 2050. Technical report. Paris, France.
Matthews H.D., Landry J.S., Partanen A.I., Allen M., Eby M., Forster P.M., Friedlingstein P., and Zickfeld K., 2017. Estimating carbon budgets for ambitious climate targets. Curr. Clim. Change Rep. 3: 69–77. DOI: 10.1007/s40641-017-0055-0
IEA, 2020. Global Energy Review: The impacts of the COVID-19 crisis on global energy demand and CO2 emissions. Technical l Report. Paris.
Strapasson A., Woods J., Chum H., Kalas N., Shah N., and Rosillo-Calle F., 2017. On the global limits of bioenergy and land use for climate change mitigation. Global Change Biology Bioenergy 9(12): 1721-1735. DOI: 10.1111/gcbb.12456
Smith P., Bustamante M., Ahammad H., et al., 2014. Chapter 11: Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change [eds Edenhofer O., Pichs-Madruga R., Sokona Y. et al.]. IPCC 5th Assessment Report, Working Group III, Cambridge University Press, Cambridge, UK.
UN – United Nations, 2010. World Population Prospects: The 2010 Revision, Volume I: Comprehensive Tables. Report. New York, USA. 503p.
World Bank, 2012. World Databank: World Development Indicators (WDI). Retrieved from the World Wide Web: http://databank.worldbank.org.
IEA, 2014. Energy Technology Perspectives 2014: Harnessing Electricity’s Potential. Technical report. Paris, France.
Strapasson A. and M.T.W. Fagá, 2007. Energy efficiency and heat generation an integrated analysis of the Brazilian energy mix. International Energy Journal 8(3): 171-180.
IEA, 2009. Tracking Industrial Energy Efficiency and CO2 Emissions. Technical report. Paris, France.
Zhang R. and S. Fujimori, 2020. The role of transport electrification in global climate change mitigation scenarios. Environmental Research Letters 15(3): 034019. DOI: 10.1088/1748-9326/ab6658.
Akashi O., Hanaoka T., Masui T., and Kainuma M., 2014. Halving global GHG emissions by 2050 without depending on nuclear and CCS. Climatic Change 123: 611-622. DOI: 10.1007/s10584-013-0942-x
Kavlak G., McNerney J., and Trancik J.E., 2018. Evaluating the causes of cost reduction in photovoltaic modules. Energy Policy 123: 700-710. DOI: 10.1016/j.enpol.2018.08.015
Rogelj J., Shindell D., Jiang K., Fifita S., Forster P., Ginzburg V., Handa C., Kheshgi H., Kobayashi S., Kriegler E., Mundaca L., Séférian R., and Vilariño M.V., 2018. Chapter 2: Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development. In: Global Warming of 1.5°C. An IPCC Special Report on 1.5°C [Masson-Delmotte, V. et al. (eds.)]. IPCC Report. Geneva.
Strapasson A., Woods J., Pérez-Cirera V., Elizondo, A., Cruz-Cano D., Pestiaux J., Cornet M., and Chaturvedi R., 2020. Energy Strategy Reviews 29: 100494. DOI: 10.1016/j.esr.2020.100494
Kaya Y., Yamaguchi M., and Geden O., 2019. Towards net zero CO2 emissions without relying on massive carbon dioxide removal. Sustainability Science 14: 1739–1743. DOI: 10.1007/s11625-019-00680-1
Davis S.J., Lewis N.S., Shaner M., et al., 2018. Net-zero emissions energy systems. Science 360(6396): eaas9793. DOI: 10.1126/science.aas9793